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Numerical wave propagation on the hexagonal C-grid
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Abstract

Inertio-gravity mode and Rossby mode dispersion properties are examined for discretizations of the linearized rotating
shallow water equations on a regular hexagonal C-grid in planar geometry. It is shown that spurious non-zero Rossby
mode frequencies found by previous authors in the f-plane case can be avoided by an appropriate discretization of the
Coriolis terms. Three generalizations of this discretization that conserve energy even for non-constant Coriolis parameter
are presented. A quasigeostrophic b-plane analysis is carried out to investigate the Rossby mode dispersion properties of
these three schemes. The Rossby mode dispersion relation is found to have two branches. The primary branch modes are
good approximations, in terms of both structure and frequency, to corresponding modes of the continuous governing
equations, and offer some improvements over a quadrilateral C-grid scheme. The secondary branch modes have vorticity
structures approximating those of small-scale modes of the continuous governing equations, suggesting that the hexagonal
C-grid might have an advantage in terms of resolving extra Rossby modes; however, the frequencies of the secondary
branch Rossby modes are much smaller than those of the corresponding continuous modes, so this potential advantage
is not fully realized.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Geodesic grids, obtained by iterative refinement of a parent icosahedron, are potentially attractive for the
horizontal discretization of global atmospheric models because they provide a nearly homogeneous and iso-
tropic coverage of the sphere [27,19,3,12,9,22,21,8,18,2,13]. Several groups are now using such grids for com-
plex weather and climate models [17,11,20]. There are essentially two types of geodesic grid, based either on a
triangular refinement of the icosahedron, or on its dual comprised of hexagons and (always exactly 12)
pentagons.

Despite growing interest, the theoretical understanding of numerical methods on geodesic grids is rather
less developed than it is for Cartesian or longitude–latitude quadrilateral grids. One set of issues involves
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the numerical wave dispersion properties and how accurately they capture the wave dispersion properties of
the continuous governing equations. For quadrilateral grids, a C-grid staggering, in which the mass variable is
stored at cell centres and the normal component of the velocity is stored at cells edges, captures inertio-gravity
wave propagation and hence geostrophic adjustment well provided the Rossby radius is well resolved [1,16,6];
an analogous C-grid staggering might be expected to work well on triangular or hexagonal grids. However, the
ratio of number of degrees of freedom in the wind field to number of degrees of freedom in the mass field
depends on the grid structure, leading to concerns that non-quadrilateral grids might give rise to computational

modes that do not propagate or are unphysical in some other way [10].
Ničković et al. [14] analysed the wave dispersion properties under the f-plane approximation (that is,

assuming planar geometry and constant Coriolis parameter f) for the linearized shallow water equations on
hexagonal grids with several alternative staggerings. For a C-grid staggering they found a numerical disper-
sion relation with four branches, two corresponding to eastward and westward inertio-gravity modes, and
two corresponding to geostrophic or Rossby modes. This may be contrasted with the quadrilateral grid
numerical dispersion relation, which has only three branches, corresponding to eastward and westward iner-
tio-gravity modes and a single Rossby mode branch. The extra Rossby mode branch found for the hexagonal
grid might be considered an advantage, given that in most practical applications the Rossby modes are of
greater interest than the inertio-gravity modes. However, it is necessary to check that the extra Rossby modes
really are approximations to physical Rossby modes and not unphysical artefacts of the discretization. In fact
both Rossby mode branches found by [14] have the undesirable property of having non-zero frequency,
whereas the f-plane Rossby mode frequency for the continuous equations is identically zero. Thus the hexag-
onal C-grid would seem to have a serious drawback in terms of its wave propagation characteristics.

This drawback can be overcome by using a ‘skewed’ variant of the C-grid with fewer velocity degrees of free-
dom [15,14], but at the price of sacrificing the isotropy of the grid. The purpose of the present paper is to revisit
numerical wave propagation on the standard, isotropic, hexagonal C-grid. On a C-grid of any structure, some
spatial averaging is unavoidable in the Coriolis terms; however, there is some choice available both in the stencil
for the averaging and in the evaluation and weighting of the Coriolis parameter, and numerical Rossby mode
propagation can be sensitive to these details [24,25,4,23]. In Section 2 it will be shown that an appropriate dis-
cretization of the Coriolis terms can remove the unphysical non-zero Rossby mode frequencies on the f-plane
hexagonal C-grid found by [14]. In Section 3, possible generalizations of this discretization to the case of non-
constant f are considered. Three alternatives that conserve energy are presented. In Section 4 a quasigeostrophic
b-plane analysis is carried out to obtain the Rossby mode dispersion relations for these three energy-conserving
schemes. These theoretical dispersion relations are compared with direct numerical calculations of normal
mode frequencies in Section 5. Section 6 discusses in some detail the extra Rossby mode branch and the extent
to which these modes approximate physical solutions of the continuous governing equations.
2. f-plane dispersion relation

It is convenient to work in terms of coordinate directions and velocity components normal to the edges of
the hexagonal grid. Let
x1 ¼ x; x2 ¼
ffiffiffi
3
p

2
y � 1

2
x; x3 ¼ �

ffiffiffi
3
p

2
y � 1

2
x; ð1Þ
where x and y are the usual Cartesian coordinates. Let x̂1 ¼ rx1; x̂2 ¼ rx2; x̂3 ¼ rx3 be the corresponding
unit vectors, and let
uj ¼ u � x̂j; j ¼ 1; 2; 3; ð2Þ

be the velocity components in these directions (see Fig. 1). An important identity in this framework is
x̂1 þ x̂2 þ x̂3 ¼ 0; ð3Þ

implying, among other things, that
ox1
wþ ox2

wþ ox3
w ¼ 0; ð4Þ



Fig. 1. Schematic showing the hexagonal C-grid configuration and the coordinate systems used in this paper. Filled circles indicate the
locations of the U points, open circles u1 points, triangles u2 points and squares u3 points.
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where oxj ¼ x̂j � r. (Here, and later, w will stand for an arbitrary field either in the continuous equations or on
the grid.)

The continuous shallow water equations, linearized about a resting state with mean geopotential U0, then
become [14]
otUþ
2

3
U0ðox1

u1 þ ox2
u2 þ ox3

u3Þ ¼ 0; ð5Þ

otu1 �
fffiffiffi
3
p ðu2 � u3Þ þ ox1

U ¼ 0; ð6Þ

otu2 �
fffiffiffi
3
p ðu3 � u1Þ þ ox2

U ¼ 0; ð7Þ

otu3 �
fffiffiffi
3
p ðu1 � u2Þ þ ox3

U ¼ 0; ð8Þ
where U is the geopotential perturbation. In this section f will be taken to be a constant f0; in later sections a
spatial variation of f will be allowed.

A couple of symmetry properties of these equations are worth noting. First, Eqs. (7) and (8) can be
obtained from (6) by cyclic permutations of the indices (1,2,3). Second, in (6), terms involving u2 appear with
opposite sign to terms involving u3, etc. Analogous properties hold throughout all of the derivations below.
These provide valuable checks on the somewhat lengthy algebra.

These equations have an extra degree of freedom compared with their analogues in Cartesian coordinates.
We should therefore expect them to satisfy some constraint, otherwise they might support spurious solutions
associated with the extra degree of freedom. From the definition of the velocity components and unit vectors
u1 þ u2 þ u3 ¼ u � ðx̂1 þ x̂2 þ x̂3Þ ¼ 0: ð9Þ

Adding (6)–(8) shows that
otðu1 þ u2 þ u3Þ ¼ 0; ð10Þ

so that the constraint (9) is maintained provided it is satisfied initially.

The governing equations are now discretized in space on a hexagonal C-grid; see Fig. 1. The distance
between neighbouring U points is d. To begin with we review the analysis for the scheme discussed by [14]:
otUþ
2

3
U0ðd1u1 þ d2u2 þ d3u3Þ ¼ 0; ð11Þ

otu1 �
f0ffiffiffi

3
p ðu2

3 � u3
2Þ þ d1U ¼ 0; ð12Þ
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otu2 �
f0ffiffiffi

3
p ðu3

1 � u1
3Þ þ d2U ¼ 0; ð13Þ

otu3 �
f0ffiffiffi

3
p ðu1

2 � u2
1Þ þ d3U ¼ 0: ð14Þ
Here, dj is the centred, second-order, two-point finite difference approximation to oxj , and ð:Þj is the two-point
average in the xj direction.

If the domain is periodic or infinite in each direction then the discrete equations will support solutions pro-
portional to expfiðk � x� xtÞg, where k ¼ ðk; lÞ is the wave vector and x is the frequency. For such solutions,
we may replace ot by �ix; ui

j by cjui and djU by 2isjU=d in (11)–(14), where
cj ¼ cosðkjd=2Þ; ð15Þ
sj ¼ sinðkjd=2Þ ð16Þ
with kj ¼ k � x̂j. Thus,
� ixUþ 4i

3d
U0ðu1s1 þ u2s2 þ u3s3Þ ¼ 0; ð17Þ

� ixu1 �
f0ffiffiffi

3
p ðu2c3 � u3c2Þ þ

2is1

d
U ¼ 0; ð18Þ

� ixu2 �
f0ffiffiffi

3
p ðu3c1 � u1c3Þ þ

2is2

d
U ¼ 0; ð19Þ

� ixu3 �
f0ffiffiffi

3
p ðu1c2 � u2c1Þ þ

2is3

d
U ¼ 0: ð20Þ
Then, eliminating u1; u2 and u3 and finally cancelling U (or, equivalently, demanding that the determinant of
this 4 � 4 linear system should vanish) leads to the dispersion relation for the discrete equations
x4 � x2 f 2
0

3
ðc2

1 þ c2
2 þ c2

3Þ þ
8U0

3d2
ðs2

1 þ s2
2 þ s2

3Þ
� �

þ 8U0f 2
0

9d2
ðs1c1 þ s2c2 þ s3c3Þ2 ¼ 0: ð21Þ
As discussed by [14], this has four roots, two corresponding to eastward and westward propagating inertio-
gravity modes, and two corresponding to ‘‘geostrophic” modes. In the limit of small wavenumber jkjd � 1
we have cj � 1; 2sj=d � kj; ð8=3d2Þðs2

1 þ s2
2 þ s2

3Þ � jkj
2, and s1c1 þ s2c2 þ s3c3 � 0. Then (21) becomes
x4 � x2ff 2
0 þ U0jkj2g � 0; ð22Þ
giving the correct frequencies for inertio-gravity modes
x2 � f 2
0 þ U0jkj2 ð23Þ
and the geostrophic modes ðx � 0Þ. For finite jkjd the factor ðc2
1 þ c2

2 þ c2
3Þ=3 is reduced below 1, leading to a

reduction of the Coriolis effect on inertio-gravity modes that is well known for the quadrilateral C-grid. More
importantly, however, the last term in (21) does not generally vanish, so the geostrophic modes must have
non-zero frequency. Moreover, as shown by [14], this frequency is not small but can be of order f0.

For a quadrilateral C-grid, [23] found that improved Rossby mode behaviour could be obtained by aver-
aging u to U points before picking up the Coriolis factor and averaging to v points, and averaging v to U points
before picking up the Coriolis factor and averaging to u points. Seeking a hexagonal grid analogue of this f-at-
U-point scheme suggests an alternative to the scheme analysed by [14] in which the contributions to the tan-
gential velocity at each cell edge are obtained by averaging over four neighbours rather than two:
otu1 �
f0ffiffiffi

3
p ðu2

21 � u3
31Þ þ d1U ¼ 0; ð24Þ

otu2 �
f0ffiffiffi

3
p ðu3

32 � u1
12Þ þ d2U ¼ 0; ð25Þ

otu3 �
f0ffiffiffi

3
p ðu1

13 � u2
23Þ þ d3U ¼ 0: ð26Þ
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Here w
ij

is shorthand for w
ij

. (Note, also, that averages in different directions commute with each other and
also with finite difference derivatives.) The U Eq. (11) remains unchanged.

The dispersion analysis proceeds exactly as for the previous scheme, except that c1 is replaced by c2c3; c2 by
c3c1 and c3 by c1c2 throughout. Unfortunately the resulting dispersion relation still has a non-zero coefficient
of x0 so the scheme still supports geostrophic modes of non-zero frequency.

A third scheme can be obtained by taking 2/3 times (24)–(26) plus 1/3 times (12)–(14):
Fig. 2.
equati
analys
waven
d=k ¼
otu1 �
f0ffiffiffi

3
p ð eu2

3 � eu3
2Þ þ d1U ¼ 0; ð27Þ

otu2 �
f0ffiffiffi

3
p ð eu3

1 � eu1
3Þ þ d2U ¼ 0; ð28Þ

otu3 �
f0ffiffiffi

3
p ð eu1

2 � eu2
1Þ þ d3U ¼ 0: ð29Þ
The notation ew1
to stand for ð2w

23 þ w
1Þ=3, along with the obvious permutations, will be useful throughout

the rest of this paper. Again the U Eq. (11) remains unchanged.
It can be shown that this new averaging operator satisfies the following identity:
d1
ew1 þ d2

ew2 þ d3
ew3 ¼ 0: ð30Þ
Values of x=f0 versus kd and ld for continuous and discrete dispersion relations. Top left: inertio-gravity modes for the continuous
ons. Top right: inertio-gravity modes for the scheme analysed by [14]. Bottom left: inertio-gravity modes for the new scheme
ed here. Bottom right: geostrophic modes for the scheme analysed by [14]. The hexagonal region shows the range of resolvable
umbers on the hexagonal grid. The parameters used are d ¼ 105 m; U0 ¼ 105 m2 s�2 and f0 ¼ 10�4 s�1, implying a resolution factor
0:0316 where k ¼

ffiffiffiffiffiffi
U0

p
=f0 is the Rossby radius.
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This is the analogue of the continuous equation identity (4), suggesting that fð:Þ is a natural averaging operator
on the hexagonal C-grid.

Now the dispersion analysis proceeds exactly as for the first scheme except that c1 is replaced by
a1 ¼ ð2c2c3 þ c1Þ=3; c2 by a2 ¼ ð2c3c1 þ c2Þ=3, and c3 by a3 ¼ ð2c1c2 þ c3Þ=3 throughout. In this case the coef-
ficient of x0 is found to vanish on account of the identity
s1a1 þ s2a2 þ s3a3 ¼ 0; ð31Þ

which can be derived using standard trigonometric identities starting from the fact that k1 þ k2 þ k3 ¼ 0, or by
substituting wavelike solutions into (30).

The resulting dispersion relation is
x4 � x2 f 2
0

3
ða2

1 þ a2
2 þ a2

3Þ þ
8U0

3d2
ðs2

1 þ s2
2 þ s2

3Þ
� �

¼ 0: ð32Þ
As for the previous schemes, this gives the correct dispersion relation in the limit jkjd � 1, but, unlike them, it
always gives frequency exactly zero for the geostrophic modes.

Fig. 2 shows the exact inertio-gravity mode dispersion relation and the corresponding numerical inertio-
gravity mode dispersion relations for the scheme analysed by [14] and the new scheme (27)–(29) (with (11))
analysed here. The parameters have been chosen to give a well-resolved Rossby radius. The numerical disper-
sion relations are very nearly isotropic, and the two numerical schemes give very similar results. Wave frequen-
cies are well approximated for small wavenumbers but are artificially slowed as the finite difference derivatives
become less accurate for large wavenumbers. Also shown is the dispersion relation for the geostrophic modes
for the scheme analysed by [14]. For the shortest resolved wavelengths the frequencies are close to f0=2.
Fig. 3. As in Fig. 2 except that U0 is reduced to 10 m2 s�2, implying d=k ¼ 3:16.
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Fig. 3 shows analogous results for a case with poorly resolved Rossby radius. Both numerical schemes accu-
rately capture the inertio-gravity mode frequencies for small wavenumbers, but give an unrealistic decrease of
frequency with increasing wavenumber due to the averaging of the Coriolis terms, which dominate pressure
gradients in this parameter regime. This decrease is worse for the new scheme, consistent with the larger stencil
used to average the Coriolis terms. In this regime too, the geostrophic modes of the [14] scheme have maxi-
mum frequency close to f0=2.

3. Energy conserving generalizations of the Coriolis term discretization

The Coriolis force acts normal to the flow and therefore does no work, so the Coriolis terms conserve energy. It
is highly desirable that a numerical scheme should retain an analogous property. On an f-plane the Coriolis terms
in (27)–(29) do have this property, in other words, if we take the sum over all grid points of u1 times (27) plus u2

times (28) plus u3 times (29) to form a kinetic energy equation we find that all Coriolis terms cancel.
We wish to extend this result to allow for arbitrary spatial variations in f; we do not restrict attention to the

case f ¼ f ðyÞ because we wish to consider arbitrary orientations of the grid relative to the northward direc-
tion. We have some freedom in whether we choose to multiply by f before averaging (e.g. ffu2

3
), after averaging

(e.g. f eu2
3), or at an intermediate stage in the averaging process; these options are all equivalent when f is con-

stant, but not when it varies.
We require that all terms proportional to u1u2 that arise from u1 times the u1 equation should cancel with

corresponding terms from u2 times the u2 equation, etc. By considering the symmetries of the terms involved,
the following three schemes are seen to conserve energy without introducing a preferred direction in the
discretization:

Scheme (i): fu2 at u1 points is discretized as ð4f u2
2

1 þ f u2
3 þ fu2

3Þ=6, etc.

Scheme (ii): fu2 at u1 points is discretized as ðf eu2
3 þ ffu2

3Þ=2, etc.

Scheme (iii): fu2 at u1 points is discretized as ð4f u2
1

2 þ f u2
3 þ fu2

3Þ=6, etc.

(we could also take any linear combination of these three). Scheme (i) is the most similar in form to the f-at-U-
points discretization discussed by [23], since the f in its first term is indeed evaluated at a U point.

Finally, for completeness, note that the other terms in the spatial discretization are also energy conserving:
upon taking 2/3 of U0u1 times (27) plus U0u2 times (28) plus U0u3 times (29) and adding to U times (11) and
summing over all grid cells, we find that all contributions from terms involving U times uj cancel, implying
zero tendency of the total energy.

4. Quasigeostrophic b-plane dispersion relation

In order to understand the properties of the two branches of geostrophic or Rossby modes, and determine
whether they are approximations to physical modes or merely numerical artefacts, it is necessary to compare
them with Rossby mode solutions of the continuous equations when there is a b-effect, i.e. a spatial variation
in f, so that the Rossby modes are non-degenerate. However, if f is allowed to vary then (5)–(8) no longer sup-
port exact wavelike solutions proportional to expfiðk � x� xtÞg. Progress can be made, in both the continuous
and discrete cases, by making the quasigeostrophic b-plane approximation [26,5,7].

On the hexagonal C-grid there are some additional mathematical complications and subtleties linked to the
extra degree of freedom and the associated extra Rossby mode branch. The derivation is therefore given below
in some detail. We consider the three energy conserving schemes proposed in Section 3, starting with scheme (i).

4.1. Scheme (i)

For scheme (i) the spatially discretized momentum equations become
otu1 �
1

6
ffiffiffi
3
p 4f u2

2
1 þ f u2

3 þ fu2

3
� �

� 4f u3
3

1 þ f u3
2 þ fu3

2
� �n o

þ d1U ¼ 0; ð33Þ
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otu2 �
1

6
ffiffiffi
3
p 4f u3

3
2 þ f u3

1 þ fu3

1
� �

� 4f u1
1

2 þ f u1
3 þ fu1

3
� �n o

þ d2U ¼ 0; ð34Þ

otu3 �
1

6
ffiffiffi
3
p 4f u1

1
3 þ f u1

2 þ fu1

2
� �

� 4f u2
2

3 þ f u2
1 þ fu2

1
� �n o

þ d3U ¼ 0: ð35Þ
Now let f ¼ f0 þ f 0, where f0 is constant and f 0 ¼ b � x has a constant spatial gradient b ¼ ða; bÞ. (Retaining
both components of b will allow us to investigate the effects of changing the alignment of the grid relative to
the northward direction.) Assume that variations in f 0 on the spatial scale of interest L are much smaller than
f0, i.e. Ljbj � f0, and that the flow evolves on a timescale much longer than 1=f0, i.e. ot � f0. Together with
the assumption jUj � U0, which we already made in linearizing the equations, these are the standard assump-
tions for quasigeostrophic b-plane shallow water theory.

Under these assumptions the leading terms in (33)–(35) define the geostrophic velocity. We will write
uj ¼ ugj þ uaj; ð36Þ

where ugj is the geostrophic component and uaj is the ageostrophic component, but then drop the subscript g in
what follows to reduce the clutter of symbols. The leading terms in (33)–(35) are then
� f0ffiffiffi
3
p ð eu2

3 � eu3
2Þ þ d1U ¼ 0; ð37Þ

� f0ffiffiffi
3
p ð eu3

1 � eu1
3Þ þ d2U ¼ 0; ð38Þ

� f0ffiffiffi
3
p ð eu1

2 � eu2
1Þ þ d3U ¼ 0: ð39Þ
An important point is that this system, considered as a set of equations for u1; u2 and u3 in terms of U, is
singular and so has a solution only if a solvability condition is satisfied. The solvability condition can be found

by applying fð:Þ 1
to (37), fð:Þ 2

to (38), and fð:Þ 3
to (39), and summing to obtain
d1
eU1 þ d2

eU2 þ d3
eU3 ¼ 0: ð40Þ
By (30), this is indeed satisfied, so there is a solution for the geostrophic flow. Note that the use of the aver-
aging operator fð:Þ as the basis for the discretization of the Coriolis terms is crucial here. The solvability con-
dition arising with other averaging operators would not be satisfied. This is consistent with the existence of
geostrophic mode frequencies of order f0 so that the quasigeostrophic assumption ot � f0 is not satisfied
for other averaging operators.

Because the system (37)–(39) is singular, its solution (if it exists) is non-unique. For future reference, we
note that, for wavelike solutions proportional to expfiðk � x� xtÞg, the solution is
u1

u2

u3

0
B@

1
CA ¼ 2i

f0d
ffiffiffi
3
p

�p1

�p2

�p3

0
B@

1
CAUþ

a1

a2

a3

0
B@

1
CAl

8><
>:

9>=
>;; ð41Þ
where
p1 ¼ s2=a3 � s3=a2; ð42Þ
p2 ¼ s3=a1 � s1=a3; ð43Þ
p3 ¼ s1=a2 � s2=a1 ð44Þ
and l is an arbitrary complex number times expfiðk � x� xtÞg, making explicit the non-uniqueness.
The usual approach in quasigeostrophic theory (both for the continuous equations and for the discrete equa-

tions on quadrilateral grids) is to determine the time evolution of the geostrophic flow by going to next order in
the momentum equations, forming the vorticity equation, and eliminating the ageostrophic divergence via the
mass continuity equation. In the present case we have the additional unknown l and so we will require an addi-
tional constraint to determine the solution. This extra constraint will come from the solvability condition for
the ageostrophic flow at next order, leading to two coupled equations for the two unknowns x and l=U.
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At next order the discrete momentum equations are:
otu1 �
f0ffiffiffi

3
p ðfua2

3 � fua3
2Þ � 1

6
ffiffiffi
3
p 4f 0u2

2
1 þ f 0u2

3 þ f 0u2
3

� �
� 4f 0u3

3
1 þ f 0u3

2 þ f 0u3
2

� �n o
¼ 0; ð45Þ

otu2 �
f0ffiffiffi

3
p ðfua3

1 � fua1
3Þ � 1

6
ffiffiffi
3
p 4f 0u3

3
2 þ f 0u3

1 þ f 0u3
1

� �
� 4f 0u1

1
2 þ f 0u1

3 þ f 0u1
3

� �n o
¼ 0; ð46Þ

otu3 �
f0ffiffiffi

3
p ðfua1

2 � fua2
1Þ � 1

6
ffiffiffi
3
p 4f 0u1

1
3 þ f 0u1

2 þ f 0u1
2

� �
� 4f 0u2

2
3 þ f 0u2

1 þ f 0u2
1

� �n o
¼ 0: ð47Þ
By repeated application in different directions of the one-dimensional identity
ab ¼ �a�bþ 1

4
DaDb ð48Þ
for any two fields a and b, where overbar indicates a two-point average and D indicates a two-point difference,
and making use of the fact that second differences of f 0 vanish because its gradient is constant, we can rewrite
the terms involving f 0. For example,
4f 0u2
2

1 þ f 0u2
3 þ f 0u2

3 ¼ 6f 0 eu2
3 þ d2 b1d1u2

2 þ 1

4
b3d3u2

� �
; ð49Þ
etc., where bj ¼ djf 0 ¼ x̂j � rf 0. Eqs. (45)–(47) then become
otu1 �
f0ffiffiffi

3
p ðfua2

3 � fua3
2Þ � f 0ffiffiffi

3
p ð eu2

3 � eu3
2Þ � d2

6
ffiffiffi
3
p B1 ¼ 0; ð50Þ

otu2 �
f0ffiffiffi

3
p ðfua3

1 � fua1
3Þ � f 0ffiffiffi

3
p ð eu3

1 � eu1
3Þ � d2

6
ffiffiffi
3
p B2 ¼ 0; ð51Þ

otu3 �
f0ffiffiffi

3
p ðfua1

2 � fua2
1Þ � f 0ffiffiffi

3
p ð eu1

2 � eu2
1Þ � d2

6
ffiffiffi
3
p B3 ¼ 0; ð52Þ
where
B1 ¼ b1d1u2
2 þ 1

4
b3d3u2

� �
� b1d1u3

3 þ 1

4
b2d2u3

� �
; ð53Þ

B2 ¼ b2d2u3
3 þ 1

4
b1d1u3

� �
� b2d2u1

1 þ 1

4
b3d3u1

� �
; ð54Þ

B3 ¼ b3d3u1
1 þ 1

4
b2d2u1

� �
� b3d3u2

2 þ 1

4
b1d1u2

� �
: ð55Þ
First we find the solvability condition for the ageostrophic flow. Take fð:Þ 1
of (50) plus fð:Þ 2

of (51) plus fð:Þ 3

of (52) to obtain
otð eu1
1 þ eu2

2 þ eu3
3Þ � 1ffiffiffi

3
p gf 0 eu2

3
1

� gf 0 eu3
2

1

þ gf 0 eu3
1

2

� gf 0 eu1
3

2

þ gf 0 eu1
2

3

� gf 0 eu2
1

3
� �

� d2

6
ffiffiffi
3
p fB1

1
þfB2

2
þfB3

3
� �

¼ 0: ð56Þ
Using (48), the terms involving f 0 may be simplified. For example
6gf 0w1
¼ 6f 0ew1

þ d2T 1ðwÞ; ð57Þ
where the operator T 1 is defined by
T 1ðwÞ ¼ b3d3w
2 þ b2d2w

3 þ 1

2
b1d1w

� �
: ð58Þ
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Analogous relations hold for gf 0w2
and gf 0w3

with T 2 and T 3 defined by cyclic permutation of indices in (58).
The solvability condition (56) becomes
otð eu1
1þ eu2

2 þ eu3
3Þ � d2

6
ffiffiffi
3
p fT 1ð eu2

3 � eu3
2Þ þ T 2ð eu3

1� eu1
3Þ þ T 3ð eu1

2� eu2
1Þg� d2

6
ffiffiffi
3
p ðfB1

1
þfB2

2
þfB3

3
Þ ¼ 0:

ð59Þ

Finally, substitute from (37)–(39) to obtain
otð eu1
1 þ eu2

2 þ eu3
3Þ � d2

6f 0

fT 1ðd1UÞ þ T 2ðd2UÞ þ T 3ðd3UÞg �
d2

6
ffiffiffi
3
p ðfB1

1
þfB2

2
þfB3

3
Þ ¼ 0: ð60Þ
Now turn to the mass continuity equation:
otUþ
2U0

3
fd1ðu1 þ ua1Þ þ d2ðu2 þ ua2Þ þ d3ðu3 þ ua3Þg ¼ 0: ð61Þ
We must first establish a discrete analogue of the condition that the geostrophic flow is non-divergent. Takefð:Þ 2
of (39) minus fð:Þ 3

of (38) to obtain
� f0ffiffiffi
3
p ð eu1

22 � eu2
12 � eu3

13 þ eu1
33Þ þ d3

eU2
� d2

eU3
¼ 0 ð62Þ
with two further equations obtained by cyclic permutation of indices
� f0ffiffiffi
3
p ð eu2

33 � eu3
23 � eu1

21 þ eu2
11Þ þ d1

eU3
� d3

eU1
¼ 0; ð63Þ

� f0ffiffiffi
3
p ð eu3

11 � eu1
31 � eu2

32 þ eu3
22Þ þ d2

eU1 � d1
eU2 ¼ 0: ð64Þ
Now take d1 of (62) plus d2 of (63) plus d3 of (64); the U terms cancel leaving
d1ð eu1
22 � eu2

12 � eu3
13 þ eu1

33Þ þ d2ð eu2
33 � eu3

23 � eu1
21 þ eu2

11Þ þ d3ð eu3
11 � eu1

31 � eu2
32 þ eu3

22Þ ¼ 0: ð65Þ

Then use the identity (30) with w equal to eu1

1; eu2
2 and eu3

3 in turn to obtain
d1ð eu1
11 þ eu1

22 þ eu1
33Þ þ d2ð eu2

11 þ eu2
22 þ eu2

33Þ þ d3ð eu3
11 þ eu3

22 þ eu3
33Þ ¼ 0: ð66Þ
This is the discrete analogue of the condition that the geostrophic flow is non-divergent. We can therefore
eliminate the divergence of the geostrophic flow from the mass continuity equation (61) to obtain
otðeU11
þ eU22

þ eU33
Þ þ 2U0

3
fd1ðfua1

11 þ fua1
22 þ fua1

33Þ þ d2ðfua2
11 þ fua2

22 þ fua2
33Þ

þ d3ðfua3
11 þ fua3

22 þ fua3
33Þg ¼ 0: ð67Þ
Now we form the vorticity equation, which can then be combined with the mass continuity equation to

eliminate the ageostrophic velocity. Take fð:Þ 2
applied to (52) minus fð:Þ 3

applied to (51) to obtain
otð eu3
2 � eu2

3Þ � f0ffiffiffi
3
p ðfua1

22 � fua2
12 � fua3

13 þ fua1
33Þ � 1ffiffiffi

3
p gf 0 eu1

2
2
� gf 0 eu2

1
2
� gf 0 eu3

1
3
þ gf 0 eu1

3
3

� �

� d2

6
ffiffiffi
3
p ðfB3

2
�fB2

3
Þ ¼ 0: ð68Þ
Substitute for the first term using (37), use (57) to simplify the terms in f 0, and use (38) and (39) to replace the
resulting terms T 2ð eu1

2 � eu2
1Þ and T 3ð eu3

1 � eu1
3Þ, to obtain
otd1Uþ
f 2

0

3
ðfua1

22 � fua2
12 � fua3

13 þ fua1
33Þ þ f0f 0

3
ð eu1

22 � eu2
12 � eu3

13 þ eu1
33Þ

þ d2

6
ffiffiffi
3
p fT 2ðd3UÞ � T 3ðd2UÞg þ

d2f0

18
ðfB3

2
�fB2

3
Þ ¼ 0: ð69Þ
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In an analogous way, or by permutation of indices, we also have
otd2Uþ
f 2

0

3
ðfua2

33 � fua3
23 � fua1

21 þ fua2
11Þ þ f0f 0

3
ð eu2

33 � eu3
23 � eu1

21 þ eu2
11Þ

þ d2

6
ffiffiffi
3
p fT 3ðd1UÞ � T 1ðd3UÞg þ

d2f0

18
ðfB1

3
�fB3

1
Þ ¼ 0 ð70Þ
and
otd3Uþ
f 2

0

3
ðfua3

11 � fua1
31 � fua2

32 þ fua3
22Þ þ f0f 0

3
ð eu3

11 � eu1
31 � eu2

32 þ eu3
22Þ

þ d2

6
ffiffiffi
3
p fT 1ðd2UÞ � T 2ðd1UÞg þ

d2f0

18
ðfB2

1
�fB1

2
Þ ¼ 0: ð71Þ
Now take d1 (69) + d2 (70) + d3 (71) to form the vorticity equation. Use the identity (30) to rewrite the age-
ostrophic velocity terms, by analogy with the step from (65) to (66), and hence eliminate them using the mass
continuity equation (67). Using the fact that the operators dj commute with the operators T k; j; k ¼ 1; 2; 3, we
find that all terms involving T k cancel, leaving
ot ðd1d1Uþ d2d2Uþ d3d3UÞ �
f 2

0

2U0

ðeU11 þ eU22
þ eU33

Þ
� �

þ f0

3
fd1½f 0ð eu1

22 � eu2
12 � eu3

13 þ eu1
33Þ�

þ d2½f 0ð eu2
33 � eu3

23 � eu1
21 þ eu2

11Þ� þ d3½f 0ð eu3
11 � eu1

31 � eu2
32 þ eu3

22Þ�g

þ d2f0

18
fd1ðfB3

2
�fB2

3
Þ þ d2ðfB1

3
�fB3

1
Þ þ d3ðfB2

1
�fB1

2
Þg ¼ 0: ð72Þ
Now use the one-dimensional identity
DðabÞ ¼ ðDaÞ�bþ �aðDbÞ ð73Þ

to re-express the terms involving f 0, then use (65) to eliminate some of the resulting terms and (37)–(39) to
simplify the rest, to obtain
ot ðd1d1Uþ d2d2Uþ d3d3UÞ �
f 2

0

2U0

ðeU11
þ eU22

þ eU33
Þ

� �

þ 1ffiffiffi
3
p b1ðd3

eU2 � d2
eU3Þ

1

þ b2ðd1
eU3 � d3

eU1Þ
2

þ b3ðd2
eU1 � d1

eU2
Þ

3
� �

þ d2f0

18
fd1ðfB3

2
�fB2

3
Þ þ d2ðfB1

3
�fB3

1
Þ þ d3ðfB2

1
�fB1

2
Þg ¼ 0: ð74Þ
We now have two equations, the solvability condition (60) and the vorticity equation (74), that have constant
coefficients. We can therefore seek solutions proportional to expfiðk � x� xtÞg, and use the fact that the solution
is of the form (41); for a given wave vector k the two equations determine the two unknowns l=U, which ties
down the wave structure, and x, the wave frequency. Substituting (41) into (60) and simplifying leads to
xðAl� RUÞ þ SUþMl� NU ¼ 0; ð75Þ

while substituting (41) into (74) and simplifying leads to
xW U� V Uþ PU� Ql ¼ 0; ð76Þ

where
A ¼ 1

d
ffiffiffi
3
p ða2

1 þ a2
2 þ a3

3Þ; ð77Þ

R ¼ 1

d
ffiffiffi
3
p ða1p1 þ a2p2 þ a3p3Þ; ð78Þ

S ¼ 1

3
ðs1t1 þ s2t2 þ s3t3Þ; ð79Þ
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M ¼ 1

9
fða3b31 � a2b21Þa1 þ ða1b12 � a3b32Þa2 þ ða2b23 � a1b13Þa3g; ð80Þ

N ¼ 1

9
fða3b31 � a2b21Þp1 þ ða1b12 � a3b32Þp2 þ ða2b23 � a1b13Þp3g; ð81Þ

W ¼ 4

d2
ðs2

1 þ s2
2 þ s2

3Þ þ
f 2

0

2U0

ða2
1 þ a2

2 þ a2
3Þ; ð82Þ

V ¼ 2

d
ffiffiffi
3
p ðb1c1q1 þ b2c2q2 þ b3c3q3Þ; ð83Þ

P ¼ 4

9
ffiffiffi
3
p

d
fðq3b31 � q2b21Þp1 þ ðq1b12 � q3b32Þp2 þ ðq2b23 � q1b13Þp3g; ð84Þ

Q ¼ 4

9
ffiffiffi
3
p

d
fðq3b31 � q2b21Þa1 þ ðq1b12 � q3b32Þa2 þ ðq2b23 � q1b13Þa3g; ð85Þ

b12 ¼ b1s1c2 þ b3s3=4; ð86Þ
t1 ¼ b3s3c2 þ b2s2c3 þ b1s1=2 ¼ b32 þ b23; ð87Þ
q1 ¼ s2a3 � s3a2 ð88Þ
with other bjk; tj and qj defined by cyclic permutation of indices.
Eliminating l=U gives the dispersion relation, a quadratic in x:
x2AW þ xfAðP � V Þ � RQþMW g þMðP � V Þ þ QðS � NÞ ¼ 0: ð89Þ

The two roots for x correspond to the two Rossby mode branches. It may be verified that the coefficient of x2

is independent of b, the coefficient of x is proportional to jbj, and the constant term is proportional to jbj2,
implying that both roots for x are proportional to jbj, as one would hope for Rossby modes. Note also that,
because the spatial discretization is energy conserving, the roots for x must be real.

4.2. Scheme (ii)

The derivation of the dispersion relation for scheme (ii) follows the same steps and is very similar in detail
to that for scheme (i). The only differences arise in the terms involving f 0 and the way they are simplified. The
dispersion relation is found to take the same form as (89) provided we redefine four of the coefficients:
M ¼ 0; ð90Þ

N ¼ 1

18
fða3t2 � a2t3Þp1 þ ða1t3 � a3t1Þp2 þ ða2t1 � a1t2Þp3g; ð91Þ

P ¼ 2

9
ffiffiffi
3
p

d
fðq3t2 � q2t3Þp1 þ ðq1t3 � q3t1Þp2 þ ðq2t1 � q1t2Þp3g; ð92Þ

Q ¼ 2

9
ffiffiffi
3
p

d
fðq3t2 � q2t3Þa1 þ ðq1t3 � q3t1Þa2 þ ðq2t1 � q1t2Þa3g: ð93Þ
4.3. Scheme (iii)

The derivation of the dispersion relation for scheme (iii) is again very similar in detail to that for scheme (i).
The dispersion relation is found to take the same form as (89) provided we redefine the four coefficients
M ;N ; P and Q by replacing bij by bji throughout (80), (81), (84) and (85).

4.4. Results

It is useful first to check the behaviour of the numerical dispersion relation in the well-resolved limit
jkjd � 1. By examining how the different contributions scale for small jkjd, the dominant contributions to
the coefficients in (89) can be identified; (89) becomes



Fig. 4.
right: s
1, 2
b ¼ 10
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W x2 � V xþ C � 0; ð94Þ

where C ¼ ½�MV þ QðS � NÞ�=A is OððjkjdÞ4Þ. One of the roots, the primary Rossby mode branch, is rela-
tively large and is the same for all three schemes:
x � V
W
� ðal� bkÞU0

f 2
0 þ U0jkj2

: ð95Þ
The frequency clearly agrees with the continuous case in this well-resolved limit; this is also evident from the
central regions of the panels in Figs. 4, 5 and 8 below. The other root, the secondary Rossby mode branch,
x � C
V

ð96Þ
is relatively small, scaling like Oðjkj3d4Þ; its mathematical form is rather complicated and is different for each
of the three schemes.

For arbitrary jkjd, motivated by the fact that the Rossby mode frequency for the continuous equations goes
to zero for wave vectors satisfying al� bk ¼ 0, we identify the primary branch of the numerical Rossby mode
dispersion relation as given by the ‘‘+” root in the formula
x ¼ �b	 signðal� bkÞðb2 � 4acÞ1=2

2a
ð97Þ
Values of x� 106 versus kd and ld for quasigeostrophic Rossby mode dispersion relations. Top left: continuous equations. Top
cheme (i) primary branch. Bottom left: scheme (ii) primary branch. Bottom right: scheme (iii) primary branch. Contour values are
and 5 times powers of 10. The parameters used are d ¼ 105 m; U0 ¼ 105 m2 s�2; f 0 ¼ 10�4 s�1; a ¼ 0 s�1 m�1 and
�11 s�1 m�1, implying a resolution factor d=k ¼ 0:0316.
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and the secondary branch as given by the ‘‘�” root, where a ¼ AW ; b ¼ AðP � V Þ � RQþMW , and
c ¼ MðP � V Þ þ QðS � NÞ. The results below justify this choice, confirming that the primary branch is indeed
almost always closer than the secondary branch to the continuous equation Rossby mode frequency for that
wave vector.

Fig. 4 shows the quasigeostrophic Rossby mode dispersion relations for the continuous equations and for
the primary Rossby mode branch of the three numerical schemes analysed above for a case with a ¼ 0. All
three schemes are very accurate for small wavenumbers and show some artificial slowing for larger wavenum-
bers. Scheme (i) is noticeably more accurate than the other two, and scheme (ii) shows some anomalous behav-
iour for the very largest resolvable wavenumbers.

Fig. 5 shows analogous results when the coordinate system and grid are rotated through 90�. At first glance
the results are qualitatively very similar to those in Fig. 4. Again, scheme (i) is noticeably more accurate than
the other two and scheme (ii) shows some anomalous behaviour for the largest resolvable wavenumbers. Sim-
ilar results are also found for other rotation angles (not shown). The fact that these numerical dispersion rela-
tions are almost insensitive to grid orientation is an improvement over the corresponding behaviour on a
quadrilateral C-grid. In particular, for a quadrilateral C-grid aligned with the north–south and east–west
directions, short east–west wavelengths are significantly retarded, with frequency going to zero for the shortest
resolvable east–west scales [23]. This is not the case for any of the hexagonal C-grid schemes examined here;
Rossby mode frequencies go to zero only when the east–west component of the wave vector goes to zero, in
agreement with the continuous dispersion relation. Thus, the hexagonal C-grid has better isotropy properties
and, for short east–west wavelengths on the primary Rossby mode branch, better accuracy, than a quadrilat-
eral C-grid.

An interesting feature of Fig. 5, however, is the fact that for all three schemes the primary branch numerical
Rossby mode frequency changes discontinuously at ld ¼ 0. More generally, a similar discontinuity occurs for
inFig. 4, except thata¼10�11s�1m�1andb¼0 s �1m�1.





Fig. 7.
water equations in a Cartesian b-plane channel of width D: the channel extends infinitely in the east–west
direction with impermeable walls at the northern and southern boundaries, and f ¼ f0 þ by where y is the
northward coordinate.

Because of the symmetry in the x-direction, this system has normal modes proportional to expðikxÞ. By
making the f-plane approximation the approximate frequencies for the inertio-gravity modes of the con-
tinuous system can be found. For the parameters used below this is an excellent approximation. Alterna-
tively, by making the quasigeostrophic approximation the approximate frequencies for the Rossby modes
of the continuous system can be found. Again, for the parameters used below this is an excellent
approximation.

We can also discretize this system using a hexagonal C-grid. Rows of hexagons are aligned parallel to the
channel, and the boundary condition v ¼ 0 at the northern and southern boundaries is approximated by set-
ting the components u2 and u3 to zero there. The normal mode frequencies of the discrete system can be found
by expressing the discrete equations in matrix form
Values
�ixs ¼Ms; ð98Þ

where s is the state vector comprising a list of all the u1; u2; u3 and U values, and then finding the eigenvalues of
M. The symmetry of the problem again implies that normal modes will be proportional to expðikxÞ. Specifying
k and taking out the exponential factor allows the problem to be reduced from two dimensions to one (though
keeping all the properties of the two-dimensional scheme) and greatly reducing the size of M. The matrix M

can be constructed numerically by repeated calls to a subroutine that calculates the tendencies of u1; u2; u3 and
U given their gridded values. This procedure gives the normal mode frequencies for the discrete, but otherwise
unapproximated, channel problem.
of x � 106versus kdandldfor secondary branch of the numerical quasigeostrophic Rossby mode dispersion relations. Top:scheme (i). Bottom left: scheme (ii). Bottom right: scheme (iii). The parameters are the same as inFig. 4.J. Thuburn / Journal of Computational Physics 227 (2008) 5836…58585851



Fig. 8. As in

Fig. 4 , except that

U0¼ 10 m2s�2, implying d=k¼ 3:161
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Finally, for comparison, approximate normal mode frequencies for the discrete problem are given by find-
ing the quantized values of the meridional component l of the wave vector allowed by the boundary conditions
and substituting those, along with the specified k, into the f-plane discrete inertio-gravity mode dispersion rela-
tion (the non-zero roots of (32)) and the quasigeostrophic b-plane Rossby mode dispersion relation (89).

Fig. 9 shows the results of these three calculations plotted together for scheme (i). The inertio-gravity mode
frequencies for the numerical scheme are very accurate for small wavenumbers but are somewhat slowed for
large wavenumbers, in agreement with Fig. 2. (The inertio-gravity mode frequencies in Fig. 9 correspond to a
section kd ¼ p=10; ld ¼ ð0; 2p=

ffiffiffi
3
p
Þ in the top left and bottom left panels of Fig. 2.) There is almost exact sym-

metry between eastward and westward inertio-gravity modes.
The primary ðx < 0Þ Rossby mode branch for the numerical scheme is also very accurate across the whole

spectrum. (This branch corresponds to a section kd ¼ p=10; ld ¼ ð0; 2p=
ffiffiffi
3
p
Þ in the top left and bottom left

panels of Fig. 4.) Interestingly, the largest relative errors occur around the middle of the spectrum.
The secondary Rossby mode branch for the numerical scheme has x > 0, but with jxj significantly smaller

than for the primary branch and with largest jxj for the largest mode numbers. (This branch corresponds to a
section kd ¼ p=10; ld ¼ ð0; 2p=

ffiffiffi
3
p
Þ in the top panel of Fig. 7.) The secondary Rossby mode branch will be

discussed further in Section 6.
For the inertio-gravity modes, the excellent agreement between the theoretical frequencies for the numer-

ical scheme and those calculated directly using (98) provides a valuable check on the correctness of the cal-
culations as well as the accuracy of the f-plane approximation. For Rossby modes there is also excellent
agreement, but this is somewhat fortuitous. The theoretical frequencies are calculated for a single Fourier
mode of wave vector ðk; lÞ in an infinite or periodic domain, whereas the calculation (98) is for a channel. In
order for the two calculations to agree, the ðk; lÞ Fourier mode must have the same frequency as the ðk;�lÞ
mode, which it does, and the velocity structures of the ðk; lÞ and ðk;�lÞ modes must allow the channel



Fig. 9. Comparison of continuous and numerical dispersion relations for a b-plane channel, showing frequency versus meridional mode
number, defined as the number of zeros in the U field in a section across the channel. Diamonds correspond to the continuous governing
equations. Frequencies greater than 10�4 s�1 in magnitude are inertio-gravity modes, obtained using the f-plane approximation.
Frequencies smaller than 10�4 s�1 in magnitude are Rossby modes, obtained using the quasigeostrophic b-plane approximation; the
positive frequency Rossby mode branch is computed using aliased wave vectors—see Section 6. Crosses (�) correspond to theoretical
frequencies for scheme (i), given by the non-zero roots of (32) for inertio-gravity modes and by (89) for Rossby modes. Plus (+) symbols
are normal mode frequencies for scheme (i) computed directly via the eigenvalue problem (98). Note that plus and cross symbols overlay
each other almost exactly. The parameters used are d ¼ 105 m; U0 ¼ 105 m2 s�2; f 0 ¼ 10�4 s�1; a ¼ 0 s�1 m�1; b ¼ 10�11 s�1 m�1 and
kd ¼ p=10. For the direct normal mode calculation N ¼ 30 rows of hexagons were used giving a channel width 30d

ffiffiffi
3
p

=2 � 2:6� 106 m.
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boundary condition to be satisfied by a suitable superposition; however, a detailed examination of the veloc-
ity structures shows that this is not the case for the Rossby modes, though it is almost true for many modes.
The effects are not noticeable for scheme (i), but they are noticeable for scheme (ii) and are significant for
scheme (iii) (see below).

Fig. 10 is similar to Fig. 9 but for scheme (ii). Again the inertio-gravity modes are well captured by the
scheme, though with some slowing at large wavenumbers. The primary Rossby mode branch is quite accu-
rately captured, though there is significant slowing for large wavenumbers making it less accurate than for
scheme (i). As for scheme (i), the secondary Rossby mode branch has x > 0 with jxj much smaller than
for the primary branch; however, for scheme (ii) the frequency does not vary monotonically with mode
number. For large mode numbers there is a small but noticeable discrepancy between the theoretical
numerical Rossby mode frequencies and those calculated using (98) due to the channel boundary
condition.

Fig. 11 is similar to Fig. 9 but for scheme (iii). Once again the inertio-gravity modes are well captured by the
scheme, though with some slowing at large wavenumbers. The primary Rossby mode branch is more accurate
than for scheme (ii) but less accurate than for scheme (i). The secondary Rossby mode branch again has x > 0,
with jxj much smaller than for the primary branch modes. The effects of the channel boundary condition are
much greater for scheme (iii): for the secondary branch modes labelled with smaller mode numbers there is
now a significant discrepancy between the theoretical numerical frequencies and those calculated using (98);
also, three negative frequency modes lie well away from the main dispersion curve.



Fig. 10. As in Fig. 9 but for scheme (ii).

Fig. 11. As in Fig. 9 but for scheme (iii).
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6. The secondary Rossby mode branch

A key question is whether or not the modes in the secondary Rossby mode branch are useful approxima-
tions to modes of the continuous equations, that is, whether or not the extra degrees of freedom in the wind
field translate, in effect, into extra resolution.

For a single field proportional to expðik � xÞ defined at U points (say) the resolvable wave vectors all lie
within the hexagonal regions indicated in Figs. 2–5 and 7 and 8. Any field with a wave vector outside this
region is aliased into the hexagonal region. Specifically, a mode of wave vector k is indistinguishable, on
the grid, from one of wave vector kþ k0 where
Fig. 12
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3
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Þ ð99Þ
for any integers n1; n2; n3.
Now consider fields with three components ðu; v;UÞ required to describe shallow water flow. For any

given k, the space of such fields is spanned by the eastward gravity, westward gravity, and Rossby normal
modes of the continuous equations for that k. For k within the hexagonal region of resolvable wave vectors,
the eastward gravity, westward gravity, and primary branch Rossby normal modes of the discrete equations
are useful approximations to these continuous normal modes. Therefore, if the secondary Rossby mode
branch is an approximation to anything physical, it must be to something with a k outside the hexagonal
region.

This can be illustrated by considering the Rossby modes on the two branches in the limit jkj ! 0. The
primary branch mode has l=U! 0, and, since the pj also tend to zero, by (41) the velocity field tends to
zero. Thus the mode consists of a constant U field and zero velocity field, consistent with geostrophic bal-
ance. The secondary branch mode, however, has U=l! 0 as jkj ! 0, and so has non-zero velocity but zero
geopotential perturbation in the limit. Since the aj all tend to 1, by (41) the three velocity components
u1; u2; u3 are all constant and equal in value. The velocity field is therefore like that depicted in Fig. 12.
The velocity field clearly has small scale structure, even though k ¼ 0. This is best illustrated by the vorticity
field, defined at the grid vertices, and indicated by the open and filled circles. This vorticity pattern is con-
sistent with that of a mode of large wavenumber; indeed there is some ambiguity as several different wave
vectors are possible, the most obvious being kd ¼ 	ð0; 4p=

ffiffiffi
3
p
Þ; kd ¼ 	ð�2p;�2p=

ffiffiffi
3
p
Þ, or

kd ¼ 	ð2p;�2p=
ffiffiffi
3
p
Þ, that is, with wave crests aligned with rows of filled circles in Fig. 12 in one of three

possible orientations, parallel to x̂1; x̂2 or x̂3.
. Schematic showing the small scale structure of the secondary branch Rossby mode with k ¼ 0. Filled circles indicate positive
ty; open circles indicate negative vorticity.
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Similar arguments hold for wave vectors other than zero on the secondary Rossby mode branch. Thus, in
terms of their vorticity structures these modes are plausible approximations to small-scale modes with wave
vectors outside the hexagonal region depicted in Figs. 2–5 and 7 and 8.

We now need to determine whether they are good approximations in terms of their frequencies. For a mode
with positive k, a negative value of x corresponds to westward propagation. The secondary branch Rossby
modes have positive x > 0; we can interpret this as westward propagation only if we assume that they repre-
sent small scale modes with k < 0. This suggests we might be able to interpret the secondary branch Rossby
mode proportional to expðik � xÞ as representing a small-scale mode of aliased wave vector kþ k0 where
k0d ¼ ð�2p;�2p=

ffiffiffi
3
p
Þ. The upper panels of Figs. 9–11 show the continuous quasigeostrophic b-plane Rossby

mode frequency at these aliased wave vectors (diamonds) for comparison with the corresponding discrete sec-
ondary branch Rossby mode frequencies (plus and cross symbols). For schemes (i) and (ii) it is clear that the
discrete Rossby mode frequencies vastly underestimate the continuous Rossby mode frequencies, by at least
an order of magnitude and often much more. (Other choices for k0 do not improve this conclusion.) Moreover,
for scheme (ii) the frequency does not vary monotonically with l, implying that group velocity will have the
wrong sign for part of the spectrum. Thus, although the hexagonal C-grid is capable of resolving extra
small-scale vorticity features, these features will propagate much too slowly, i.e. be excessively passive, and
so cannot be expected to contribute additional accuracy to numerical solutions of the governing equations.
For scheme (iii) the situation is only slightly better. About one third of the secondary Rossby mode branch
has frequencies within a factor 10 of the continuous frequencies for aliased wave vectors; however, the discrete
frequencies are still too small by at least a factor 6.

7. Conclusions

For a hexagonal C-grid discretization of the f-plane shallow water equations, the spurious non-zero fre-
quencies for geostrophic modes noted by previous authors can be avoided by appropriate averaging of the
Coriolis terms (27)–(29). Three extensions of this averaging that conserve energy in the case of spatially vary-
ing f have been presented (Section 3).

As noted by previous authors, the discrete solution has two Rossby mode branches, giving the same total
number of Rossby modes as inertio-gravity modes; this may be contrasted with the case of a quadrilateral C-
grid which gives a single Rossby mode branch and only half as many Rossby modes as inertio-gravity modes.
A heuristic argument for why this occurs is as follows. On a C-grid the divergence is naturally calculated at U
points, while vorticity is naturally calculated at the grid vertices. For both the quadrilateral and hexagonal C-
grids, the number of Rossby modes is equal to the number of vorticity degrees of freedom, while the number
of inertio-gravity modes is equal to the number of mass plus divergence degrees of freedom. (As an aside, the
same reasoning applies on a triangular C-grid, showing that the triangular C-grid supports five times as many
inertio-gravity modes as Rossby modes; this might be considered a disadvantage of the triangular C-grid if the
Rossby modes are of the greatest physical interest.)

Another view of how the extra Rossby mode branch arises on the hexagonal C-grid is as follows. For the
continuous equations, quasigeostrophic theory isolates the Rossby modes by assuming geostrophic balance at
leading order, thereby reducing the number of degrees of freedom at each point from three to one. Similar
reasoning applies on the quadrilateral C-grid. On the hexagonal C-grid, however, the geostrophic velocity
is not uniquely determined by the U field; the ambiguity is expressed mathematically by the field l in (41).
Thus the quasigeostrophic theory has two degrees of freedom per grid cell, giving rise to two Rossby mode
branches.

A quasigeostrophic b-plane analysis has been carried out (Section 4) to determine the discrete dispersion
relation for both Rossby mode branches for the three energy conserving schemes. The results have been com-
pared with a direct numerical calculation of the normal mode frequencies (Section 5). The primary branches
give good approximations to the Rossby mode frequencies of the continuous governing equations, particularly
scheme (i), which is more accurate than schemes (ii) and (iii) at large wavenumber.

The hexagonal C-grid has very good isotropy properties. The inertio-gravity mode dispersion relation
shows only a very weak dependence on the direction of the wave vector relative to the grid; and the primary
Rossby mode branch shows only weak dependence on the orientation of the grid relative to the northward
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direction. Also, particularly for scheme (i), the primary branch Rossby mode frequency remains quite accurate
even near the resolution limit, and does not go to zero for the shortest resolvable east–west scales as it does for
a quadrilateral C-grid aligned with the north–south and east–west directions.

The secondary branch Rossby modes (Section 6) have vorticity structures resembling smaller scale Rossby
modes, suggesting that the extra vorticity degrees of freedom on the hexagonal C-grid do translate into extra
resolution for vortical modes. However, there is ambiguity over the wave vector of the continuous equation
modes that they represent. Also, the frequencies of the secondary branch modes are much smaller than those
of the corresponding modes of the continuous equations. Thus, the additional small-scale features that may be
resolved in the vorticity field will be excessively passive, and cannot be expected to contribute additional accu-
racy to numerical solutions. Moreover, the secondary branch dispersion relations are strongly sensitive to the
details of the discretization of the Coriolis terms, and, for any choice of discretization, are strongly sensitive to
the orientation of the grid relative to the northward direction.

All numerical models of the atmosphere include some form of dissipation on small scales, whether explicitly
specified or inherent in the numerical methods used; it serves several purposes, including providing a sink for
the downscale potential enstrophy cascade as well as cleaning up noise generated by dispersion errors and
parameterization schemes. Secondary branch Rossby modes would be most strongly damped by such scale-
selective dissipation. Therefore, it is possible that in practice their poor dispersion properties would not be
an issue. In that case, the good isotropy and accurate behaviour at large wavenumber of the inertio-gravity
modes and primary branch Rossby modes might make hexagonal grids competitive with quadrilateral grids
in terms of accuracy per unit cost.

The results presented here apply only to regular hexagonal grids in planar geometry. Good behaviour of
hexagonal C-grid schemes depends crucially on the appropriate averaging of the Coriolis terms. An important
extension of this work, therefore, will be to determine how the averaging operator fð:Þ must be modified for the
slightly distorted hexagons and the pentagons on a spherical geodesic grid.
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