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Abstract

Inertio-gravity mode and Rossby mode dispersion properties are examined for discretizations of the linearized rotating
shallow water equations on a regular hexagonal C-grid in planar geometry. It is shown that spurious non-zero Rossby
mode frequencies found by previous authors in the f~plane case can be avoided by an appropriate discretization of the
Coriolis terms. Three generalizations of this discretization that conserve energy even for non-constant Coriolis parameter
are presented. A quasigeostrophic f-plane analysis is carried out to investigate the Rossby mode dispersion properties of
these three schemes. The Rossby mode dispersion relation is found to have two branches. The primary branch modes are
good approximations, in terms of both structure and frequency, to corresponding modes of the continuous governing
equations, and offer some improvements over a quadrilateral C-grid scheme. The secondary branch modes have vorticity
structures approximating those of small-scale modes of the continuous governing equations, suggesting that the hexagonal
C-grid might have an advantage in terms of resolving extra Rossby modes; however, the frequencies of the secondary
branch Rossby modes are much smaller than those of the corresponding continuous modes, so this potential advantage
is not fully realized.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Geodesic grids, obtained by iterative refinement of a parent icosahedron, are potentially attractive for the
horizontal discretization of global atmospheric models because they provide a nearly homogeneous and iso-
tropic coverage of the sphere [27,19,3,12,9,22,21,8,18,2,13]. Several groups are now using such grids for com-
plex weather and climate models [17,11,20]. There are essentially two types of geodesic grid, based either on a
triangular refinement of the icosahedron, or on its dual comprised of hexagons and (always exactly 12)
pentagons.

Despite growing interest, the theoretical understanding of numerical methods on geodesic grids is rather
less developed than it is for Cartesian or longitude-latitude quadrilateral grids. One set of issues involves
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the numerical wave dispersion properties and how accurately they capture the wave dispersion properties of
the continuous governing equations. For quadrilateral grids, a C-grid staggering, in which the mass variable is
stored at cell centres and the normal component of the velocity is stored at cells edges, captures inertio-gravity
wave propagation and hence geostrophic adjustment well provided the Rossby radius is well resolved [1,16,6];
an analogous C-grid staggering might be expected to work well on triangular or hexagonal grids. However, the
ratio of number of degrees of freedom in the wind field to number of degrees of freedom in the mass field
depends on the grid structure, leading to concerns that non-quadrilateral grids might give rise to computational
modes that do not propagate or are unphysical in some other way [10].

Nickovi¢ et al. [14] analysed the wave dispersion properties under the f-plane approximation (that is,
assuming planar geometry and constant Coriolis parameter f) for the linearized shallow water equations on
hexagonal grids with several alternative staggerings. For a C-grid staggering they found a numerical disper-
sion relation with four branches, two corresponding to eastward and westward inertio-gravity modes, and
two corresponding to geostrophic or Rossby modes. This may be contrasted with the quadrilateral grid
numerical dispersion relation, which has only three branches, corresponding to eastward and westward iner-
tio-gravity modes and a single Rossby mode branch. The extra Rossby mode branch found for the hexagonal
grid might be considered an advantage, given that in most practical applications the Rossby modes are of
greater interest than the inertio-gravity modes. However, it is necessary to check that the extra Rossby modes
really are approximations to physical Rossby modes and not unphysical artefacts of the discretization. In fact
both Rossby mode branches found by [14] have the undesirable property of having non-zero frequency,
whereas the f~plane Rossby mode frequency for the continuous equations is identically zero. Thus the hexag-
onal C-grid would seem to have a serious drawback in terms of its wave propagation characteristics.

This drawback can be overcome by using a ‘skewed’ variant of the C-grid with fewer velocity degrees of free-
dom [15,14], but at the price of sacrificing the isotropy of the grid. The purpose of the present paper is to revisit
numerical wave propagation on the standard, isotropic, hexagonal C-grid. On a C-grid of any structure, some
spatial averaging is unavoidable in the Coriolis terms; however, there is some choice available both in the stencil
for the averaging and in the evaluation and weighting of the Coriolis parameter, and numerical Rossby mode
propagation can be sensitive to these details [24,25,4,23]. In Section 2 it will be shown that an appropriate dis-
cretization of the Coriolis terms can remove the unphysical non-zero Rossby mode frequencies on the f~plane
hexagonal C-grid found by [14]. In Section 3, possible generalizations of this discretization to the case of non-
constant fare considered. Three alternatives that conserve energy are presented. In Section 4 a quasigeostrophic
p-plane analysis is carried out to obtain the Rossby mode dispersion relations for these three energy-conserving
schemes. These theoretical dispersion relations are compared with direct numerical calculations of normal
mode frequencies in Section 5. Section 6 discusses in some detail the extra Rossby mode branch and the extent
to which these modes approximate physical solutions of the continuous governing equations.

2. f-plane dispersion relation

It is convenient to work in terms of coordinate directions and velocity components normal to the edges of
the hexagonal grid. Let

NI NI

X1 =X, x2=7y—§x7 xzz—Ty—EX, (1)

where x and y are the usual Cartesian coordinates. Let X; = Vx|, X, = Vx;, X3 = Vx; be the corresponding
unit vectors, and let

up=u-%;, j=123, 2)
be the velocity components in these directions (see Fig. 1). An important identity in this framework is

X +X+X =0, (3)
implying, among other things, that

Oq ¥ + 0 + 0 =0, (4)
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Fig. 1. Schematic showing the hexagonal C-grid configuration and the coordinate systems used in this paper. Filled circles indicate the
locations of the @ points, open circles u; points, triangles u, points and squares u3 points.

where 0,, = X; - V. (Here, and later, i will stand for an arbitrary field either in the continuous equations or on
the grid.)

The continuous shallow water equations, linearized about a resting state with mean geopotential @,, then
become [14]

0, + % @y (0, 1 + Otz + Oy yu3) = 0, (5)
oy — \/Lg(uz —u3)+ 0,9 =0, (6)
Buttr — \/%(ug ) 42,8 =0, (7)
Byt — %(u1 )43, B =0, (8)

where @ is the geopotential perturbation. In this section f will be taken to be a constant fp; in later sections a
spatial variation of f will be allowed.

A couple of symmetry properties of these equations are worth noting. First, Egs. (7) and (8) can be
obtained from (6) by cyclic permutations of the indices (1,2,3). Second, in (6), terms involving u, appear with
opposite sign to terms involving u3, etc. Analogous properties hold throughout all of the derivations below.
These provide valuable checks on the somewhat lengthy algebra.

These equations have an extra degree of freedom compared with their analogues in Cartesian coordinates.
We should therefore expect them to satisfy some constraint, otherwise they might support spurious solutions
associated with the extra degree of freedom. From the definition of the velocity components and unit vectors

u1+u2+u3:u~(f(1+f(2+§(3):0 (9)
Adding (6)—(8) shows that
0,(ur +uy +u3) =0, (10)

so that the constraint (9) is maintained provided it is satisfied initially.
The governing equations are now discretized in space on a hexagonal C-grid; see Fig. 1. The distance
between neighbouring @ points is d. To begin with we review the analysis for the scheme discussed by [14]:

2
6,<D+§<1§0(51u1 +52u2+53u3) :0, (11)

O,uy — ﬁ)

7§(u—23—u—32)+51¢:07 (12)
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Quuy — %(m‘ —ur) + 6,9 =0, (13)
atus—ﬁ(u—f—u—zl)wzdﬁzo. (14)
V3

Here, 9; is the centred, second-order, two-point finite difference approximation to d,,, and 6’ is the two-point
average in the x; direction.

If the domain is periodic or infinite in each direction then the discrete equations will support solutions pro-
portional to exp{i(k - x — wt)}, where k = (k, /) is the wave vector and w is the frequency. For such solutions,
we may replace 0, by —iw,u/ by c;u; and ;@ by 2is;®/d in (11)—(14), where

= cos(k;d/2), (15)
;= sin(k,d/2) (16)
with k; = k - X;. Thus,

Ny

<

—iw® + :—;éo(ulsl + uzsy + uzs3) =0, (17)
— iowu; —%(uzq — u3¢2) —l—%@:O, (18)
_ia)uz—%(mcl —M1C3)+%¢:07 (19)
—lou;y — \j;% (u1cs — upey) + %(p =0. (20)

Then, eliminating u;,u, and u3 and finally cancelling @ (or, equivalently, demanding that the determinant of
this 4 x 4 linear system should vanish) leads to the dispersion relation for the discrete equations

fo 8D, 80,/
w“—wz{;°<c%+c§+c§>+W(s%+s§+s§) Ay

As discussed by [14], this has four roots, two corresponding to eastward and westward propagating inertio-
gravity modes, and two corresponding to “geostrophic” modes. In the limit of small wavenumber |k|d < 1
we have ¢; ~ 1,2s;/d ~ k;, (8/3d)(s> + 53 4 53) ~ [k|>, and si¢; + s2¢5 + 3¢5 ~ 0. Then (21) becomes

ot — {2+ Do|k|’} =0, (22)

(S]Cl + $70 + S3C3)2 =0. (21)

giving the correct frequencies for inertio-gravity modes
o % f§ + Polk[’ (23)

and the geostrophic modes (w = 0). For finite |k|d the factor (¢? + ¢3 + ¢3)/3 is reduced below 1, leading to a
reduction of the Coriolis effect on inertio-gravity modes that is well known for the quadrilateral C-grid. More
importantly, however, the last term in (21) does not generally vanish, so the geostrophic modes must have
non-zero frequency. Moreover, as shown by [14], this frequency is not small but can be of order fj.

For a quadrilateral C-grid, [23] found that improved Rossby mode behaviour could be obtained by aver-
aging u to @ points before picking up the Coriolis factor and averaging to v points, and averaging v to @ points
before picking up the Coriolis factor and averaging to u points. Seeking a hexagonal grid analogue of this f-at-
d-point scheme suggests an alternative to the scheme analysed by [14] in which the contributions to the tan-
gential velocity at each cell edge are obtained by averaging over four neighbours rather than two:

Oy — % @ —u:") +6,® =0, (24)
Qutz — % @2 — ') + 6,0 = 0, (25)
Oz — o (" —m>”) + 0,9 =0. (26)
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Here /" is shorthand for Wj. (Note, also, that averages in different directions commute with each other and
also with finite difference derivatives.) The @ Eq. (11) remains unchanged.

The dispersion analysis proceeds exactly as for the previous scheme, except that ¢, is replaced by cyc3, ¢, by
c3c; and ¢3 by ¢jc, throughout. Unfortunately the resulting dispersion relation still has a non-zero coefficient
of »° so the scheme still supports geostrophic modes of non-zero frequency.

A third scheme can be obtained by taking 2/3 times (24)—(26) plus 1/3 times (12)—(14):

Qo —%(@3 ) 4 6,6 =0, (27)

dus — 2 (@ — @) + 5,0 =0, (28)
NG

duts — 2L (52 = BY) + 030 = 0. (29)
NG

The notation l;l to stand for (2@23 + Jl) /3, along with the obvious permutations, will be useful throughout
the rest of this paper. Again the @ Eq. (11) remains unchanged.
It can be shown that this new averaging operator satisfies the following identity:

PRVANEE RYANEP RyAN)} (30)

Exact GW frequency Nickovic et al

Nickovic et al Geostr.

Fig. 2. Values of w/f, versus kd and Id for continuous and discrete dispersion relations. Top left: inertio-gravity modes for the continuous
equations. Top right: inertio-gravity modes for the scheme analysed by [14]. Bottom left: inertio-gravity modes for the new scheme
analysed here. Bottom right: geostrophic modes for the scheme analysed by [14]. The hexagonal region shows the range of resolvable
wavenumbers on the hexagonal grid. The parameters used are d = 10° m, &, = 10° m?> s~2and f; = 10~* s~!, implying a resolution factor
d/). = 0.0316 where 1 = +/®,/f; is the Rossby radius.
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This is the analogue of the continuous equation identity (4), suggesting that (.) is a natural averaging operator
on the hexagonal C-grid.
Now the dispersion analysis proceeds exactly as for the first scheme except that ¢; is replaced by
a; = (2cae3 4+ ¢1)/3,¢2 by ay = (2¢3¢1 + ¢2) /3, and ¢3 by a3 = (2¢1¢2 + ¢3)/3 throughout. In this case the coef-
ficient of «’ is found to vanish on account of the identity

s1ay + s2a; + s3a3 = 0, (31)

which can be derived using standard trigonometric identities starting from the fact that k; + k> + k3 = 0, or by
substituting wavelike solutions into (30).
The resulting dispersion relation is

4 2 fo2 2 2 2 8D, 2 2 2
' —w ?(a1+a2+a3)+ﬁ(sl+sz+s3) =0. (32)

As for the previous schemes, this gives the correct dispersion relation in the limit |k|d < 1, but, unlike them, it
always gives frequency exactly zero for the geostrophic modes.

Fig. 2 shows the exact inertio-gravity mode dispersion relation and the corresponding numerical inertio-
gravity mode dispersion relations for the scheme analysed by [14] and the new scheme (27)—(29) (with (11))
analysed here. The parameters have been chosen to give a well-resolved Rossby radius. The numerical disper-
sion relations are very nearly isotropic, and the two numerical schemes give very similar results. Wave frequen-
cies are well approximated for small wavenumbers but are artificially slowed as the finite difference derivatives
become less accurate for large wavenumbers. Also shown is the dispersion relation for the geostrophic modes
for the scheme analysed by [14]. For the shortest resolved wavelengths the frequencies are close to f;/2.

Nickovic et al

IR

Fig. 3. As in Fig. 2 except that @, is reduced to 10 m? s~2, implying d// = 3.16.
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Fig. 3 shows analogous results for a case with poorly resolved Rossby radius. Both numerical schemes accu-
rately capture the inertio-gravity mode frequencies for small wavenumbers, but give an unrealistic decrease of
frequency with increasing wavenumber due to the averaging of the Coriolis terms, which dominate pressure
gradients in this parameter regime. This decrease is worse for the new scheme, consistent with the larger stencil
used to average the Coriolis terms. In this regime too, the geostrophic modes of the [14] scheme have maxi-
mum frequency close to fo/2.

3. Energy conserving generalizations of the Coriolis term discretization

The Coriolis force acts normal to the flow and therefore does no work, so the Coriolis terms conserve energy. It
is highly desirable that a numerical scheme should retain an analogous property. On an f-plane the Coriolis terms
in (27)—(29) do have this property, in other words, if we take the sum over all grid points of u; times (27) plus u,
times (28) plus u3 times (29) to form a kinetic energy equation we find that all Coriolis terms cancel.

We wish to extend this result to allow for arbitrary spatial variations in f; we do not restrict attention to the
case f = f(y) because we wish to consider arbitrary orientations of the grid relative to thNe3northward direc-
tion. We have some freedom in whether we choose to multiply by f'before averaging (e.g. fu, ), after averaging
(e.g. f1123), or at an intermediate stage in the averaging process; these options are all equivalent when fis con-
stant, but not when it varies.

We require that all terms proportional to u;u, that arise from u; times the u; equation should cancel with
corresponding terms from u, times the u, equation, etc. By considering the symmetries of the terms involved,
the following three schemes are seen to conserve energy without introducing a preferred direction in the
discretization:

Scheme (i): fu, at u; points is discretized as (4fLT221 + fur? +]723)/6, etc.
Scheme (ii): fu, at u; points is discretized as (f1" + fu;}) /2, etc.
Scheme (iii): fu, at u; points is discretized as (4f° u_zlz + [’ +E3) /6, etc.

(we could also take any linear combination of these three). Scheme (i) is the most similar in form to the f-at-@-
points discretization discussed by [23], since the f in its first term is indeed evaluated at a & point.

Finally, for completeness, note that the other terms in the spatial discretization are also energy conserving:
upon taking 2/3 of ®qu; times (27) plus Pyu, times (28) plus Pous times (29) and adding to @ times (11) and
summing over all grid cells, we find that all contributions from terms involving @ times u; cancel, implying
zero tendency of the total energy.

4. Quasigeostrophic p-plane dispersion relation

In order to understand the properties of the two branches of geostrophic or Rossby modes, and determine
whether they are approximations to physical modes or merely numerical artefacts, it is necessary to compare
them with Rossby mode solutions of the continuous equations when there is a ff-effect, i.e. a spatial variation
in f, so that the Rossby modes are non-degenerate. However, if f'is allowed to vary then (5)—(8) no longer sup-
port exact wavelike solutions proportional to exp{i(k - x — wt)}. Progress can be made, in both the continuous
and discrete cases, by making the quasigeostrophic f-plane approximation [26,5,7].

On the hexagonal C-grid there are some additional mathematical complications and subtleties linked to the
extra degree of freedom and the associated extra Rossby mode branch. The derivation is therefore given below
in some detail. We consider the three energy conserving schemes proposed in Section 3, starting with scheme (i).

4.1. Scheme (i)

For scheme (i) the spatially discretized momentum equations become

duuy — 6\15 { (4/7—22‘ + +ﬁz3) - (4,0?331 + +ﬁ32)} £6,0=0, (33)
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s = = { (47 i+ ') = (AT + 5+ )} 620 =0 (34)
Qi 6\1@{(@7—113 ) - (47 + fiRt ') b+ 030 =0, (35)

Now let /" = fi + /7, where f; is constant and /' = B - x has a constant spatial gradient f = (o, ). (Retaining
both components of f will allow us to investigate the effects of changing the alignment of the grid relative to
the northward direction.) Assume that variations in f” on the spatial scale of interest L are much smaller than
fo, i.e. L|B| < fo, and that the flow evolves on a timescale much longer than 1/f, i.e. 0, < f. Together with
the assumption |®| <« &, which we already made in linearizing the equations, these are the standard assump-
tions for quasigeostrophic f-plane shallow water theory.

Under these assumptions the leading terms in (33)—(35) define the geostrophic velocity. We will write

Uj = Ug; + Uy, (36)

where u,; is the geostrophic component and u,; is the ageostrophic component, but then drop the subscript g in
what follows to reduce the clutter of symbols. The leading terms in (33)—(35) are then

—%(iff — %) + 0,0 =0, (37)
—%(@1—m3)+52¢:o, (38)
—\%(72—@1)%3@:0. (39)

An important point is that this system, considered as a set of equations for u,u, and u; in terms of @, is
singular and so Pas a solut10121 only if a solvabi}lity condition is satisfied. The solvability condition can be found

by applying (.) to (37), (.) to(38), and (.) to (39), and summing to obtain
519 + 8,8 + 08,0 =0. (40)

By (30), this is indeed satisfied, so there is a solution for the geostrophic flow. Note that the use of the aver-
aging operator (.) as the basis for the discretization of the Coriolis terms is crucial here. The solvability con-
dition arising with other averaging operators would not be satisfied. This is consistent with the existence of
geostrophic mode frequencies of order f; so that the quasigeostrophic assumption 0, < f, is not satisfied
for other averaging operators.

Because the system (37)—(39) is singular, its solution (if it exists) is non-unique. For future reference, we
note that, for wavelike solutions proportional to exp{i(k - x — w?)}, the solution is

. 2i ~h “
u | =—— — P+ | a , 41
2 fod\/?; p2 2 n ( )

us —P3 as

where

P = $2/a3 — s3/az, (42)
Py =s3/ar —si1/as, (43)
p3 :Sl/CZz*Sz/al (44)

and p is an arbitrary complex number times exp{i(k - x — wt)}, making explicit the non-uniqueness.

The usual approach in quasigeostrophic theory (both for the continuous equations and for the discrete equa-
tions on quadrilateral grids) is to determine the time evolution of the geostrophic flow by going to next order in
the momentum equations, forming the vorticity equation, and eliminating the ageostrophic divergence via the
mass continuity equation. In the present case we have the additional unknown u and so we will require an addi-
tional constraint to determine the solution. This extra constraint will come from the solvability condition for
the ageostrophic flow at next order, leading to two coupled equations for the two unknowns w and p/®.
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At next order the discrete momentum equations are:

Jo —3 > 3 s T w3l e w2\
at”l—ﬁ(uaz —uaa)—6\/~{<4f + i +fuz)—(4fu3 + f'uz +fu3)}—07 (45)

B Jo — o~ el r—1 | 7L —12 —3 . 7\ |
O, = T = ) - 6\/_{(4f /w4 ) = (4T ) =0, (46)

7& —~2  ~ —1 —2 2\ (7l r—1 . 7\ |
6,u3 \/g(ual [7%%) ) 6\/_{(4f up +f [Z5% +f up ) <4f Uus +fu2 +fu2 )} = 0 (47)

By repeated application in different directions of the one-dimensional identity

ab = ab + %AaAb (48)

for any two fields ¢ and b, where overbar indicates a two-point average and A indicates a two-point difference,
and making use of the fact that second differences of f’ vanish because its gradient is constant, we can rewrite
the terms involving f’. For example,

L~ P |
A0+ f5 4 fuy = 61" + <5151“22 Jr43353u2)’ (49)
etc., where 8, = 0," = X, - Vf'. Egs. (45)«(47) then become
N N / _ _ d2
Oy — %(%23 — Up?) — %(Mz3 —3?) — mBl =0, (50)
- U a4
at”Z_%(ua3l_ual3)_%(u3l_u13)_m32:07 (51)
_ ~ o - d
atuz—%(ual —uazl)—%(u12—uzl)—m33=07 (52)
where
1
= (/3151142 + - /3353M2> - <ﬁ1511433 +Zﬁ252u3>’ (53)
51 1
= | f202113 +Zﬁ151143 — | ooty +Zﬁ353u1 ) (54)
1 5,1
By = | B305u +Zﬁ252141 — | B3935z +Zﬁ151u2 - (55)

First we find the solvability condition for the ageostrophic flow. Take 61 of (50) plus 62 of (51) plus 63
of (52) to obtain

R S N B - LR e L S e L S
(' + un? +us) 7 S = flus? + fuz Sfrud + fu Sua
& /—1 —2 3
———\(B, +B, +B =0. 56
(BB 4 By) (56)

Using (48), the terms involving /” may be simplified. For example

—1 ~1
6f"y =6 +d’Ti(y), (57)
where the operator T is defined by

Ty () = (/@W + Brdall + %ﬁlw) . (58)



J. Thuburn ! Journal of Computational Physics 227 (2008) 5836-5858 5845

—2 —3
Analogous relations hold for /"y and fyy with T, and T3 defined by cyclic permutation of indices in (58).
The solvability condition (56) becomes

Pl o~ o~ : — o~ 1~ P 21 2 3
Gt(tﬂ I+ u22 + 1433) —@{Tl(u[% — u32) + Tz(u3l — u13) + T3(u12 - uzl)} _ﬁ(& + B, +B; ) =0.
(59)
Finally, substitute from (37)—(39) to obtain
o+ i+ ) — AT (6,8) 1 Ta(6x®) + Ts(350)) — S (B 4+ By 4 BY) = 0 (60)
u u ) — —— = —0.
(U1 2 3 6/, 1(01 2(02 3(03 63! 2 3
Now turn to the mass continuity equation:
29,
0P+ T{él (ur +ua) + 02 (U2 + up) + 63(us +uz3)t = 0. (61)

We must first establlsh a discrete analogue of the condition that the geostrophic flow is non-divergent. Take
() of (39) minus () of (38) to obtain

Joom o~ 3, 3 532 %3
— (ul — Uy " — U3+ up )+53(D 75245 =0 (62)
V3
with two further equations obtained by cyclic permutation of indices
fo ,~33  ~23  ~a, ~m =3 F
— =W w7 -t )+ 6P —5P =0, (63)
V3
Jo o~ ~3n ~m, -m 51 32 _
_ﬁ(tg - — T+ iu)+ 0,9 —6P =0. (64)
Now take d; of (62) plus d, of (63) plus 5 of (64); the @ terms cancel leaving
51(1/7122 _ 12512 _ %13 _’_L’l*'l%) _’_52(%33 _ 12'323 _ LT]ZI + 1/7211) _'_53(12'311 _ u~131 _ @32_’_ LTSZZ) =0. (65)

Then use the identity (30) with y equal to &', %2 and 3 in turn to obtain
51(11111 + M122 + 12'13?) +52(u211 + @22 + 12'233) +53(~11 + 1/7322 + 12'333) =0. (66)

This is the discrete analogue of the condition that the geostrophic flow is non-divergent. We can therefore
eliminate the divergence of the geostrophic flow from the mass continuity equation (61) to obtain

~11 ~22  ~33 20 _ — — — —
o +o + @ )+7{5 (ualll +u0122+ua133) +52(ua2“ TS +ua233)

+ 63(u "+ U )} =0. (67)

Now we form the vorticity equation, which can then be combined with the mass continuity equation to

2 —~3
eliminate the ageostrophic velocity. Take (.) applied to (52) minus (.) applied to (51) to obtain

1 — 2 — 2 — 3 —— 3
ot — it _ﬂ ,;:22_&:12_““ —&-17:23 (a2 = — 4 gl
(=) = T — i = ) - (SR - s )
B —0 (68)
63 3 2 )=0.

Substitute for the ﬁrst term using (37), use (57) to simplify the terms in f”, and use (38) and (39) to replace the
resulting terms 75(u;> — ') and T3(u3! — u1?), to obtain

6t51@+%(&;22_@12_l};13+ua ) fOf(~22 1;212—1;3134—5]33)
+ Ty (0,0) - To(0,0)) + f°( _B)=0 (69)
6\/§ 2(03 3(02 18 3 2 ) — VY.
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In an analogous way, or by permutation of indices, we also have

2 /
0n0 + 18 (i — i — i + i)+ L @ )

g 2f
6\/_{T3(5 19) = T1(6:9)} + — 13 (Bl — By ):O (70)
and
at53¢+§(@11_@«131_@32+u0 2 4 fof(~11 A B+ 5
d’ dfy —~1 2
{T(6,®) — T»(, @)}—F ( 2 —31 )=0. (71)

_|_7
6v/3

Now take d; (69) + 9, (70) + 05 (71) to form the vorticity equation. Use the identity (30) to rewrite the age-
ostrophic velocity terms, by analogy with the step from (65) to (66), and hence eliminate them using the mass
continuity equation (67). Using the fact that the operators 6, commute with the operators Ty, j, k = 1,2, 3, we
find that all terms involving T cancel, leaving

a,{(5151d5+5252d5+5353¢) f‘) (di“+<b + @ )} +%{51V’(ifl”—@12—5313+if133)]

_’_52[/{/(@33 _ 12'323 _ u~121 +u2 )] +53[f (M3 _ u131 _ @32_’_17322)]}

d’ ~2
+g 101(Bs” — By )+ 6B — By )+ (B —B )} =0. (72)
Now use the one-dimensional identity
A(ab) = (Aa)b + a(Ab) (73)

to re-express the terms involving f’, then use (65) to eliminate some of the resulting terms and (37)—(39) to
simplify the rest, to obtain

at{(5151¢+5252¢+6353¢) zf‘O ((D —|—(p +¢ )}

1 1 2

*f{wﬁf—ézé% +By(6,18° — 5,8 +B3(5251—5152)3}
d2 5

CRHOB By )+ oa(Bi — By )+ 0s(B — B )} =0. (74)

We now have two equations, the solvability condition (60) and the vorticity equation (74), that have constant
coefficients. We can therefore seek solutions proportional to exp{i(k - x — wt)}, and use the fact that the solution
is of the form (41); for a given wave vector k the two equations determine the two unknowns p/®, which ties
down the wave structure, and w, the wave frequency. Substituting (41) into (60) and simplifying leads to

(A —RP) +S® +Mu— NP =0, (75)
while substituting (41) into (74) and simplifying leads to

oW® —VP+PP—Qu=0, (76)

where

ad+d+ta 71

= \f( 1+ + ad), (77)

a\p, + axp, + asps), 78

d\/_( 1P 2P 3P3) (78)

1
S=§(S1t1 + s2tp + 5383), (79)
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1
M= §{(a3b31 — aybay)ay + (a1biy — asbyy)as + (aybys — arbiz)as}, (80)
1
N = 6{(a3b31 — ab1)p; + (a1b12 — asbsn)ps + (a2bys — arbis)ps }s (81)
4 15
W= dz( JrSzJFSz) 2% (al +"2+"3) (82)
2
V= d_ﬁ(ﬁlclql + Brc2q; + Bie3qs), (83)
4
P = W{(‘Iabu — q2b21)py + (91012 — q3032)ps + (q2b23 — q1b13) 3 (84)
0= 9\/_d{<q3b31 — @oba)ar + (g1612 — gsba)as + (2023 — q1b13)as}, (85)
b]z = ﬁlslcz + ﬁ3S3/4, (86)
t1 = 35302 + Prsacy + fi51/2 = by + bos, (87)
g1 = $20a3 — S3a3 (88)

with other by, ¢; and g; defined by cyclic permutation of indices.
Eliminating u/@® gives the dispersion relation, a quadratic in w:

W*AW + o{A(P—V) —RQ+ MW} +M(P —V)+Q(S —N) =0. (89)

The two roots for w correspond to the two Rossby mode branches. It may be verified that the coefficient of w?
is independent of B, the coefficient of w is proportional to ||, and the constant term is proportional to ||,
implying that both roots for w are proportional to ||, as one would hope for Rossby modes. Note also that,
because the spatial discretization is energy conserving, the roots for w must be real.

4.2. Scheme (ii)

The derivation of the dispersion relation for scheme (ii) follows the same steps and is very similar in detail
to that for scheme (i). The only differences arise in the terms involving f” and the way they are simplified. The
dispersion relation is found to take the same form as (89) provided we redefine four of the coefficients:

M =0, (90)
1
N = ﬁ{(dﬂz — wt3)p; + (a1ts — ast))p, + (axt) — artz)ps }, (91)
2
P=——A(gstr — q,13)p; + (q15 — q311)p, + (311 — q12)p3 }, 92
9\/§d{(‘l32 :63)p1 + (@113 — q3t1)py + (921 — q4 2)1’3} (92)
2
0= m{(%h = gt3)a1 + (9,6 — gst)az + (qx11 — qy12)as}. (93)

4.3. Scheme (iii)

The derivation of the dispersion relation for scheme (iii) is again very similar in detail to that for scheme (1).
The dispersion relation is found to take the same form as (89) provided we redefine the four coefficients
M,N,P and Q by replacing b;; by b;; throughout (80), (81), (84) and (85).

4.4. Results
It is useful first to check the behaviour of the numerical dispersion relation in the well-resolved limit

|k|d < 1. By examining how the different contributions scale for small |k|d, the dominant contributions to
the coefficients in (89) can be identified; (89) becomes
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Wa* — Vo4 C =0, (94)

where C = [-MV + Q(S — N)]/4 is O(([k|d)*). One of the roots, the primary Rossby mode branch, is rela-
tively large and is the same for all three schemes:
ot~ (ol — k) Do

N PR 95
W f2 4 @k 55)

The frequency clearly agrees with the continuous case in this well-resolved limit; this is also evident from the
central regions of the panels in Figs. 4, 5 and 8 below. The other root, the secondary Rossby mode branch,

is relatively small, scaling like O(|k|’d*); its mathematical form is rather complicated and is different for each
of the three schemes.

For arbitrary |k|d, motivated by the fact that the Rossby mode frequency for the continuous equations goes
to zero for wave vectors satisfying o/ — fk = 0, we identify the primary branch of the numerical Rossby mode
dispersion relation as given by the “+” root in the formula

—b + sign(al — pk)(b* — 4ac)'?
@= 2a

©7)

Exact RW frequency Scheme (i)
. [ . ;

Fig. 4. Values of @ x 10° versus kd and Id for quasigeostrophic Rossby mode dispersion relations. Top left: continuous equations. Top
right: scheme (i) primary branch. Bottom left: scheme (ii) primary branch. Bottom right: scheme (iii) primary branch. Contour values are
I, 2 and 5 times powers of 10. The parameters used are d =10"m, & =10 m>s2 f,=10"*s"' «=0s"'m"' and
B=10" s m!, implying a resolution factor d/A = 0.0316.
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and the secondary branch as given by the “—” root,
c=M(P—V)+ Q(S — N). The results below justify this ¢
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